
Jabberwocky Documentation
Release 1

Chris Smith

October 28, 2016

Contents

1 Getting Started 1
1.1 Jabberwocky Overview . 1
1.2 Quickstart . 2

2 Caching 5
2.1 Overview . 5
2.2 Usage . 5
2.3 Cache Provider . 6
2.4 Sitecore Integration . 8
2.5 Asynchronous Caching . 8

3 Glass Interface Factory 11
3.1 Overview . 11
3.2 Initial Setup . 12
3.3 Implementation Guide . 13
3.4 Usage . 16

4 Mini Profiler 17
4.1 Overview . 17
4.2 Module Setup . 17
4.3 Configuration . 17
4.4 MiniProfiler Setup . 18

5 Inversion of Control 21
5.1 Overview . 21
5.2 Autowired Services . 21
5.3 Configuration . 22

6 MVC Integration 23
6.1 Overview . 23
6.2 Best Practices . 23
6.3 View Renderings . 24
6.4 The View Model . 24

7 Packages 27
7.1 Jabberwocky.Core . 27

i

ii

CHAPTER 1

Getting Started

1.1 Jabberwocky Overview

The following packages are included as part of the Jabberwocky library suite.

The core libraries represent the common stack for developing on all new Sitecore solutions. The extra libraries are
recommended (but entirely optional), and include specific features that can be included in solutions piecemeal.

The code analysis libraries are complements of their respective Core libraries, and provide diagnostics and code fixes
for common patterns when using the respective Core libraries. They are highly recommended if you are developing in
Visual Studio 2015.

1.1.1 Core Libraries

• Jabberwocky.Core

• Jabberwocky.Autofac

• Jabberwocky.Glass

• Jabberwocky.Glass.Autofac

• Jabberwocky.Glass.Autofac.Mvc

• Jabberwocky.WebApi

1.1.2 Extra Libraries

• Jabberwocky.Autofac.Extras.MiniProfiler

1.1.3 Code Analysis Libraries

• Jabberwocky.Core.CodeAnalysis (for Jabberwocky.Core)

• Jabberwocky.Glass.CodeAnalysis (for Jabberwocky.Glass)

1

Jabberwocky Documentation, Release 1

1.1.4 Dependency Graph

The naming convention for each project attempts to make clear its dependencies.

For instance, the Jabberwocky.Core library contains no dependencies, and can be included in any standard .NET
project.

Similar to the Core project, the Jabberwocky.Autofac project has no external dependencies other than Jabber-
wocky.Core and Autofac, and by extension, its dependencies (ie. Castle.Core). This means that the Jabber-
wocky.Autofac project may be used outside of Sitecore projects, wherever IoC may be desirable.

The Jabberwocky.WebApi project also has no dependencies other than on Jabberwocky.Core, and WebApi.

The remaining Jabberwocky.Glass.* projects all rely on Glass Mapper, with each subsequent package relying on more
and more dependencies (Autofac, MVC). These packages are meant to bootstrap and codify Sitecore development with
a common set of patterns and practices.

1.2 Quickstart

If you are starting a new project, you will want to download the Jabberwocky packages from the Velir Nuget feed.

If you haven’t yet set that up, you’ll want to go to Visual Studio -> Tools -> Options -> NuGet Package Manager ->
Package Sources

Then you’ll want to add ‘http://nuget.velir.com/nuget‘ as a feed (you can also name the feed ‘Velir’).

If you’re starting a new MVC project, you can start by just including the Jabberwocky.Glass.Autofac.Mvc package
into your website project. If you’re not using MVC, you can include the Jabberwocky.Glass.Autofac project instead.

You will also want to pull in the Glass.Mapper.Sc package. This will allow you to setup your Glass Models and
configure the attribute loader in the GlassMapperScCustom.cs file.

Note: For instructions on setting up Glass.Mapper, refer to the guide here.

Notice that in either case, we’re going to assume you’ll be using the common stack of Glass.Mapper and Autofac.

The first thing that you’ll want to do is create a new folder in the root of your Website project, called ‘App_Start’. In
this folder, you’ll want to create a new class, called AutofacConfig.

You can use the following as a template:

public class AutofacConfig
{

public static void Start()
{

var builder = new ContainerBuilder();

builder.RegisterGlassServices();
builder.RegisterCacheServices();
builder.RegisterProcessors(Assembly.Load("YOURPROJECT.Library"));
builder.RegisterGlassMvcServices("YOURPROJECT.Web");
builder.RegisterGlassFactory("YOURPROJECT.Library");
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());
builder.RegisterControllers(Assembly.GetExecutingAssembly());

// Module registrations
builder.RegisterModule(new MiniProfilerModule("YOURPROJECT.Library", "YOURPROJECT.Web"));
builder.RegisterModule(new LogInjectionModule<ILog>(LogManager.GetLogger);

2 Chapter 1. Getting Started

http://nuget.velir.com/nuget
http://glass.lu/Mapper/Sc/Tutorials/Tutorial1

Jabberwocky Documentation, Release 1

// Custom Registrations

// This is necessary to 'seal' the container, and make it resolvable from the AutofacStartup.ServiceLocator singleton
IContainer container = builder.Build();
container.RegisterContainer();

// Create the dependency resolver.
var resolver = new AutofacWebApiDependencyResolver(container);

// Configure Web API with the dependency resolver.
GlobalConfiguration.Configuration.DependencyResolver = resolver;

// Configure the MVC dependency resolver
DependencyResolver.SetResolver(new AutofacDependencyResolver(container));

}
}

Note: If you are going to use the MiniProfilerModule like in the sample above, you will also need to include
the Jabberwocky.Autofac.Extras.MiniProfiler nuget package.

1.2. Quickstart 3

Jabberwocky Documentation, Release 1

4 Chapter 1. Getting Started

CHAPTER 2

Caching

2.1 Overview

Jabberwocky has a built-in caching framework based on the underlying .NET MemoryCache. This makes it extremely
portable and flexible - it can be used across any .NET project, and it can be extended to provide additional functionality.

The base implementation provided by the Core library is the BaseCacheProvider. This implements the
ICacheProvider interface, which itself is a composition of two sub-interfaces:

• ISyncCacheProvider

• IAsyncCacheProvider

These interfaces expose synchronous and asynchronous caching functions, respectively.

Finally, there are multiple cache classes defined within the Jabberwocky libraries:

• GeneralCache

• SiteCache

Note: If you plan on using IoC (via Autofac, which is highly recommended for all Sitecore projects), then you
should avoid direct references to either of these concrete implementations, and instead rely on the ICacheProvider
interface instead.

2.2 Usage

You should consider using the ICacheProvider service whenever the result of an expensive operation needs to be
cached for later use.

Prime candidates include:

• Web service calls

• Sitecore descendants traversal

• and so much more...

Attention: It is also recommended to go through the cache callback documentation to understand how the callback
mechanism works.

5

Jabberwocky Documentation, Release 1

2.2.1 Simple Usage

Generally speaking, when working in a Sitecore solution, you should consider using the following overload that
accepts a string key parameter, and a Func<T> callback parameter:

var returnVal = _cacheProvider.GetFromCache<object>("key", () => obj);

This is the simplest way to cache an item, and will keep the cached item in memory until either:

1. A publish operation occurs, or

2. The .NET runtime is under memory pressure, and the cache item gets evicted automatically

You can also use the asynchronous functions to perform the same function, but instead of blocking on the call, you
can await it instead.

var returnVal = await _cacheProvider.GetFromCacheAsync<object>("key", () => obj);

or

var returnVal = await _cacheProvider.GetFromCacheAsync<object>("key", async ct => await GetResultAsync(ct));

2.2.2 Generating a Cache key

When choosing a cache key, you should ensure that it is unique to the object being cached, and that it appropriately
varies by any contextual values that may affect the result of the callback operation.

For instance, if the object being cached relies on the current user (perhaps via HttpContext.Current.User),
then the cache key should include a variable that uniquely identifies that user.

Note: By convention, the key parameter should be scoped to its particular function area, and be formatted with vary-
ing parameters, like so: var key = string.Format("MyClass.MyMethod:{0}:{1}", myParam1,
myParam2);

2.2.3 Advanced Scenarios

You can also use the provided overloads with an absolute expiration.

For the asynchronous overloads, there is also an optional CancellationToken parameter that you can pass to the
GetFromCacheAsync function. If the token is cancelled while the function is being awaited, you can either handle
it yourself in the callback, or in the case where the current call is awaiting on the underlying asynchronous lock, the
operation will be cancelled.

Be sure to check out the section on Asynchronous Caching for more information on the asynchronous functions,
including cancellation.

2.3 Cache Provider

The primary caching provider is exposed through the ICacheProvider interface. This implements both the
ISyncCacheProvider and IAsyncCacheProvider interfaces.

The base implementation of the ICacheProvider is the BaseCacheProvider, which provides an abstract im-
plementation for the interface. This allows developers to extend the base caching facility with their own functionality.

6 Chapter 2. Caching

Jabberwocky Documentation, Release 1

Important: If you intend to extend the base caching implementation, be aware the caching classes are expected to be
thread-safe, and any descendants must also be thread-safe.

For general caching purposes, a GeneralCache class has been provided, which inherits from the
BaseCacheProvider abstract class.

2.3.1 General Cache

The GeneralCache uses .NET’s MemoryCache under the hood, and is thus suitable for a variety of situations.
Notably, it has no dependencies on the HttpContext, or System.Web DLL, so it can be used in any type of application.

2.3.2 Site Cache

The SiteCache is a singleton implementation of the BaseCacheProvider. It is intended to be used for
ASP.NET websites, and provides a handler to clear the entire cache.

This is ideal for Sitecore solutions, where it is desirable to clear the site’s cache on publish.

Note: If you include the Jabberwocky.Glass package in your project, a Jabberwocky.Glass.config file will
automatically be added to your App_Config\Include directory, which will wire up publish event handlers to
clear the cache.

In the next section, we will take a look at how the SiteCache is extended to work seamlessly with Sitecore out-of-
the-box, requiring virtually no setup.

2.3.3 Understanding The Cache Callback

It is important to understand how the caching operation works. The BaseCacheProvider implements the reusable
caching logic, and so all inheritors also inherit this logic.

When caching an object via one of the caching functions, the cache will attempt to locate the object in the underlying
MemoryCache using the provided cache key parameter. If it is found, the cached object is immediately returned,
and no further processing is required.

On the other hand, if the object is not found, then the cache will be required to execute the cache callback to calculate
the value to be cached. Before this happens, the cache will enter a critical region (by locking on an a temporary cache
object, discriminated by the unique cache key parameter).

Important: This is why it is important to create correct cache keys. These keys act as mutually exclusive locks, so
that only a single cache callback can be executed at the same time, per unique key.

By wrapping all invocations of the cache callback in a critical region, we ensure that only a single thread can
execute the callback at a time, thus causing all other concurrent requests for the same cache key to block.

In most cases, this ends up saving time and resources, as this prevents the expensive callback operation from being
called more than once. Intead, all blocking threads will receive the cached result once the initial callback operation
completes.

2.3. Cache Provider 7

Jabberwocky Documentation, Release 1

2.4 Sitecore Integration

When the Jabberwocky.Glass package is imported, you’ll have access to the ContainerBuilder extension
method: builder.RegisterCacheServices().

Note: If you followed the Quickstart, then you should already have this registered.

When cache services have been registered with Autofac by calling the extension method above, then the
ICacheProvider (and ISyncCacheProvider/IAsyncCacheProvider) will have been registered for you.

Included as part of this registration is a decorator that will wrap the underlying cache provider, and provide Sitecore
specific behavior. By default, the underlying cache provider is the SiteCache.

This behavior is provided by the SitecoreCacheDecorator class, and it ensures that all cache calls works
seamlessly with Sitecore, by providing the following services:

1. Cache keys will automatically vary by Sitecore Context parameters:

• Language

• Database

• Site Name

2. Caching will only occur in the web database context

• The cache acts as a ‘no-op’ when in the master context.

3. The Cache will automatically clear on publish

2.5 Asynchronous Caching

2.5.1 Overview

The IAsyncCacheProvider interface exposes the asynchronous caching functions.

Unlike their synchronous counterparts found in the ISyncCacheProvider, these functions all follow the Task-
based Asynchronous Pattern (TAP), are are thus Task<T> returning.

Effectively, this means that these functions are all non-blocking, and will all execute asynchronously. Furthermore,
this means that each of the asynchronous functions can be awaited with the await keyword.

The benefits to using the asynchronous functions become clear in situations where you may have long-running IO
operations (like network calls), or are already executing code in an asynchronous context, and want to prevent blocking
on synchronous locks.

Thus, by using the asynchronous caching functions, you gain the benefit of:

1. Non-blocking asynchronous locking

2. Asynchronous cache callback execution

The first point is important to note, because as outlined in the callback documentation, when resorting to executing the
callback, the cache will enter a critical region. In an asynchronous execution context, it is important to eliminate
blocking calls, as these can (potentially) lead to deadlocks.

Thus, the asynchronous caching functions use an asynchronous locking primitive that does not block the thread.

8 Chapter 2. Caching

Jabberwocky Documentation, Release 1

2.5.2 GetFromCacheAsync

There are a few variations on the asynchronous caching functions (ignoring the overloads with expiration):

Task<T> GetFromCacheAsync<T>(string key, Func<T> callback,
CancellationToken token = default(CancellationToken))

Task<T> GetFromCacheAsync<T>(string key, Func<CancellationToken, Task<T>> callback,
CancellationToken token = default(CancellationToken))

Regardless of which function is used, they are all asynchronous, and will return a Task<T>. This allows you to
await the result of the call asynchronously.

There are two variations that allow you to specify either a synchronous cache callback, or an asynchronous one.
While it may seem counter-intuitive to include an asynchronous overload that allows for executing a synchronous
callback, the reason for this is to allow you to execute expensive synchronous callbacks, while still allowing you to
asynchronously await the caching function.

The primary benefit of doing this is that the critical region of the asynchronous function still uses an asynchronous
lock, and thus it is desirable to use the asynchronous overload when caching a synchronous callback, so that multiple
threads attempting to retrieve the same cached value don’t block.

2.5.3 Cancellation

All of the provided overloads accept an optional CancellationToken. By passing in a vaild token, you can cancel
an ongoing cache operation. There are two points where a caching operation can be cancelled:

1. When the function attempts to execute the cache callback, and enters the critical region, or

2. When the function has already entered the critical region, and is currently executing the callback.

In the first case, if the CancellationToken is cancelled while the current thread is awaiting on the asynchronous
lock, the function will throw.

In the second case, it is up to the implementor of the callback fuction to appropriately handle cancellation, as the
token is passed into the callback as the sole parameter.

2.5. Asynchronous Caching 9

Jabberwocky Documentation, Release 1

10 Chapter 2. Caching

CHAPTER 3

Glass Interface Factory

3.1 Overview

3.1.1 Introduction

The Glass Interface Factory is a re-imagining of the (Custom) Item Interface Factory.

It is built to work with Glass Mapper items, and is intended to be used with auto-generated glass templates (ie. with
TDS).

In essence, it provides services that can be thought of as codifying both the Adapter and (more loosely)
Dynamic/Multi-Dispatch patterns into a single easy to use framework.

What this means in practice is that you can now easily encapsulate business logic that should apply to specific Sitecore
templates within common interfaces. With those defined, you can then create implementations of those interfaces for
a given Sitecore template. This defines the adapter pattern part.

Note: The interfaces and implementations of those interfaces referred to above, are called the Glass Factory
Interface and Glass Factory Type respectively.

The real magic occurs when you consider the Sitecore template hierarchy. Using a form of dynamic dispatch, we can
create faux object-inheritance hierarchies between implementations of these interfaces.

Because each Glass Factory Type is an adapter for a particular Sitecore template, when a particular function is
not implemented for a particular Glass Factory Type, we can search the base template hierarchy for that particular
template to see if there exists another Glass Factory Type that both implements the specified Glass Factory Interface,
and acts an adapter for a base Sitecore template of the original template.

This allows us to write code once and apply common behavior to base Sitecore templates, while letting us also override
said behavior as needed on more derived Sitecore templates.

You can find more information on how this works in the Implementation Guide section.

3.1.2 Implementations

There are two primary implementations of the Glass Interface Factory to allow for use both with, and without Autofac.

In both cases, a factory builder is provided for ease of setup:

• Without Autofac: DefaultGlassFactoryBuilder

• With Autofac: AutofacGlassFactoryBuilder

11

Jabberwocky Documentation, Release 1

Note: If you followed the quickstart guide, then you don’t need to use any builders directly.
Instead, the builder.RegisterGlassFactory() extension will automatically register the
IGlassInterfaceFactory service for you, and will handle construction of the factory.

The next section will cover setting up the factory.

3.2 Initial Setup

Setting up the Glass Interface Factory is both easy and straightforward. Depending on your needs, you may use it
with, or without Autofac.

3.2.1 With Autofac

If you’re using Autofac, then you don’t need to do anything other than register the factory via the
builder.RegisterGlassFactory() extension method.

Then in your code, you should be able to use constructor injection to request the IGlassInterfaceFactory
interface as a dependency, like so:

private readonly IGlassInterfaceFactory _factory;
public MyService(IGlassInterfaceFactory factory) {

_factory = factory;
}

3.2.2 Without Autofac

If for any reason you can’t use Autofac, you can manually construct the factory using the provided
DefaultGlassFactoryBuilder:

var options = new ConfigurationOptions(debugEnabled: false, assemblies: "YOURPROJECT.Library");
var sitecoreServiceFunc = () => new SitecoreContext() ?? new SitecoreService("web");
_builder = new DefaultGlassFactoryBuilder(options, sitecoreServiceFunc);

var factory = _builder.BuildFactory();

Important: It is important that you also store the result of the _builder.BuildFactory() as a singleton, as
the GlassInterfaceFactory is thread-safe, and the process of creating the factory is expensive.

Attention: The above code is provided as a sample only. The sitecoreServiceFunc will return the current
context’s glass version of the Sitecore.Context. However, this will only work within the context of an HTTP
request, so be aware that this may not work when in the context of a Sitecore pipeline, or other non-HTTP context.
In those cases, the above func will return use the web database.

3.2.3 Configuration Options

Regardless of whether or not you use Autofac, you can configure the setup of the GlassInterfaceFactory to
specify:

12 Chapter 3. Glass Interface Factory

Jabberwocky Documentation, Release 1

• Enable/Disable Debug mode

• Which assemblies to scan for GlassFactoryInterface and GlassFactoryType declarations.

With Autofac, that might look something like:

var options = new ConfigurationOptions(debugEnabled: true, assemblies: "YOURLIBRARY");
builder.RegisterGlassFactory(options);

The debug flag is useful for catching errors during development. It enables behavior that will throw a
TypeMismatchException when the Glass Interface Factory attempts to convert a Glass Mapper item to its corre-
sponding Glass Factory Type implementation, and it detects that the runtime type of the Glass Model is incompatible
with the Glass Factory Type’s expected Glass Model Type.

This is usually the result of out-of-sync TDS models, and/or incorrectly passing in Glass Mapper models to
the GetItem<T> function without using the SitecoreService.GetItem<IGlassBase>(inferType:
true) overload.

3.3 Implementation Guide

There are two pieces to implement when using the Glass Interface Factory:

• Glass Factory Interface

• Glass Factory Type

The Glass Factory Interface defines the adapter contract (like any other interface), and the Glass Factory Type
implements the interface, and binds it to a specific Glass Mapper model type.

This is accomplished by using two attributes:

• GlassFactoryInterfaceAttribute

• GlassFactoryTypeAttribute

You can apply these attributes to an interface and a class for each of the GlassFactoryInterfaceAttribute
and GlassFactoryTypeAttribute respectively.

Check out the respective pages below for instructions on how to implement and use each of these types:

3.3.1 Glass Factory Interface

The Glass Factory Interface should encapsulate common business functionality that should have potential applica-
tions across multilple Sitecore templates.

For instance, the canonical example would be an interface to adapt Sitecore items as listable items, usable within
search listings across the site.

We might name this interface IListable, and we could define it like so:

[GlassFactoryInterface]
public interface IListable
{

string ListTitle { get; }
string Url { get; }
string Topic { get; }
string DisplayDate { get; }
string Author { get; }
string ListImage { get; }

}

3.3. Implementation Guide 13

Jabberwocky Documentation, Release 1

The goal here is to encapsulate all of the information that we might need in order to display an arbitrary Sitecore item
within a listing component on the site.

Important: Notice that the interface is decorated with the [GlassFactoryInterface] attribute. This is
required in order to use this interface with the Glass Interface Factory.

We can include arbitrary functions or properties in the interface declaration, however convention dictates that we make
all properties get-only. It is also a best-practice to ensure that all exposed functions and properties have no side-effects
- ie. they are pure functions.

In the next section, we’ll examine how to implement this functionality, and bind it to specific Sitecore templates.

3.3.2 Glass Factory Type

The Glass Factory Type should implement the specific functionality defined in one or more Glass Factory Interfaces.

Requirements

In order to create a Glass Factory Type, the implementing class must satisfy the following criteria:

1. Be marked abstract

2. Be decorated with the GlassFactoryTypeAttriute

3. Specify a valid Glass Mapper type in the GlassFactoryTypeAttribute‘s parameter

Note: You can also optionally inherit from the BaseInterface<T> abstract class. Doing so allows you to access
the underlying Glass Model via a InnerItem property.

Example

Continuing on from the IListable example in the previous section, let’s assume we have the following template
hierarchy in Sitecore (indented lines represent nested base templates):

1. Article Page Template

• Global Page Template

2. Blog Post Template

• Global Page Template

With such a template hierarchy, we can start to implement our IListable interface for any of the given templates.

Here’s an example of what our implementation of IListable might look like as it pertains to the Article Page
Template.

[GlassFactoryType(typeof(IArticlePage))]
public abstract class ArticlePageModel : BaseInterface<IArticlePage>, IListable
{

public ArticlePageModel(IArticlePage model) : base(model)
{
}

public abstract string ListTitle { get; }

14 Chapter 3. Glass Interface Factory

https://en.wikipedia.org/wiki/Pure_function

Jabberwocky Documentation, Release 1

public abstract string Url { get; }
public abstract string Topic { get; }
public abstract string DisplayDate { get; }

public string Author
{

get { return InnerItem.Authors; }
}

public abstract string ListImage { get; }
}

Notice that the GlassFactoryTypeAttribute has the typeof(IArticlePage) parameter defined. This
binds the implementation to that particular Sitecore template.

Important: If you elect to inherit from the (recommended) BaseInterface<T>, then you must ensure that the
generic type param T matches the parameter in the GlassFactoryTypeAttribute.

What’s important to note here is that the class is marked abstract, and you only need implement the specific
functionality that may differ from the base functionality. In this case, only the Author property has been implemented
(by returning the underlying IArticlePage‘s Authors field value.)

All of the other properties have been marked as abstract, and by doing this it is assumed that one of the underlying
base-templates of the Article Page Template will implement this functionality.

Fall-back Behavior

For any given property or function that is not implemented for a given Glass Factory Type, it is assumed that the
implementation must lie in another Glass Factory Type that is bound to a base template. When this is the case, the
Glass Interface Factory will dynamically dispatch calls to these ‘unimplemented’ functions to base-template imple-
mentations.

This behavior is referred to as fall-back behavior, and is a powerful feature of the Glass Interface Factory.

With this feature, we can write common units of business logic, and apply those to common base templates in Sitecore.
Whenever a specific template that inherits from these base templates needs different logic, we can simply change the
logic in the corresponding Glass Factory Type implementation, without affecting any of the base template logic. Any
functions that don’t require special logic need not change, since by marking them as abstract, we automatically
gain the ability to inherit the functionality from existing base template implementations.

Given the ArticlePageModel definition above, if we were to define an implementation of IListable for the
Global Page Template, then all of the functions marked as abstract in the ArticlePageModel would fall-
back to the implementation in the GlobalPageModel:

[GlassFactoryType(typeof(IGlobalPage))]
public abstract class GlobalPageModel : BaseInterface<IGlobalPage>, IListable
{

public GlobalPageModel(IArticlePage model) : base(model)
{
}

public string ListTitle => InnerItem.Title;
public string string Url => InnerItem.Url;
public string Topic => InnerItem.Topic;
public string DisplayDate => InnerItem.PublishDate.ToString();

3.3. Implementation Guide 15

Jabberwocky Documentation, Release 1

public abstract string Author { get; }

public string ListImage => InnerItem.ThumnailImage.Url;
}

Note: If a property or function has no base implementation (because all implementors have marked it as abstract),
then the return value will simply be null.

3.4 Usage

Once you have your Glass Factory Interfaces and Glass Factory Types defined and implemented, then you are ready
to use the IGlassInterfaceFactory in your code:

public IListable GetIListable(IGlassInterfaceFactory factory,
ISitecoreContext context) {

var contextItem = context.GetItem<IGlassBase>(inferType: true);
IListable listable = factory.GetItem<IListable>(contextItem);

return listable;
}

Important: Note that we use inferType: true when getting the current context item via Glass Mapper’s
ISitecoreContext service. This ensures that the runtime type of the returned contextItem variable is set to
the actual Glass Mapper model that matches the current item’s Sitecore template.

In the example above, we assume that an IListable Glass Factory Interface has been defined, and that
the current context item in Sitecore has a corresponding Glass Factory Type implementation. If not, the
factory.GetItem<IListable> will return null.

16 Chapter 3. Glass Interface Factory

CHAPTER 4

Mini Profiler

4.1 Overview

A MiniProfiler integration has been included in the Jabberwocky.Autofac.Extras.MiniProfiler nuget
package.

By installing this package, you will be provided with deep profiling telemetry of all of your code. It provides timing
information for each of your classes’ methods, allowing you to examine where the most time is spent in your code.

Depending on how you set this up, you can choose to have this enabled only on certain environments, or even configure
it to switch on and off on Production environments to troubleshoot performance issues.

4.2 Module Setup

This integration takes the form of an Autofac Module, and can be installed with a single line:

builder.RegisterModule(new MiniProfilerModule("YOURPROJECT.Library", "YOURPROJECT.Web"));

Note: Be sure that you have included the Jabberwocky.Autofac.Extras.MiniProfiler nuget package
in your Website project, otherwise you won’t have access to the module.

As an example, you can consider conditionally enabling/disabling the module based on the DEBUG compiler flag:

#if DEBUG
builder.RegisterModule(new MiniProfilerModule("YOURPROJECT.Web"));

#endif

4.3 Configuration

There are multiple configuration options for the MiniProfiler integration. First and foremost, you must specify which
assemblies to instrument. The MiniProfiler module will only provide profiling information for types found in those
assemblies.

Important: If you are also using the Glass Interface Factory, and wish to profile the Glass Interface Types, then you
should use the MiniProfileModule’s constructor that accepts an array of IProxyStrategy types, and pass in a new

17

Jabberwocky Documentation, Release 1

instance of the following type: GlassInterfaceFactoryStrategy.

The available configuration options (in reverse order of precendence):

1. assemblies: Specifies which assemblies to instrument

2. includeNamespaces: Specifies root namespaces to instrument types from (filtered by assemblies)

3. excludeNamespaces: Excludes specific root namespaces from instrumentation

4. excludeTypes: Excludes specific types from instrumentation

5. excludeAssemblies: Excludes specific assemblies from instrumentation

6. strategies: Allows for specifying new strategies for generating proxies for instrumentation

The strategies parameter is provided in case you ever need to extend the proxy implementation. As with the
GlassInterfaceFactoryStrategy, if there is a specific use case where you need to change the proxy behav-
ior, you can do so by creating your own strategy.

Note: The order of the strategies matters, as the selection algorithm will use the first strategy that returns true when
CanHandle is called.

4.4 MiniProfiler Setup

To configure MiniProfiler itself, you will need to follow the instructions here

In short, on your primary base layout, add the following directive (RenderIncludes):

@using StackExchange.Profiling;
<head>
..

</head>
<body>

...
@MiniProfiler.RenderIncludes()

</body>

Then add the following to your Global.asax(.cs):

#if DEBUG
protected void Application_BeginRequest()
{

if (Sitecore.Context.Item != null && !Sitecore.Context.PageMode.IsPageEditorEditing
&& !Sitecore.Context.PageMode.IsPreview)

{
MiniProfiler.Start();

}
}

protected void Application_EndRequest()
{

MiniProfiler.Stop();
}

#endif

18 Chapter 4. Mini Profiler

http://miniprofiler.com/

Jabberwocky Documentation, Release 1

Like in the example, you can optionally choose to include the conditional preprocessor directives to only enable
profiling when the DEBUG compiler flag is set to true.

4.4. MiniProfiler Setup 19

Jabberwocky Documentation, Release 1

20 Chapter 4. Mini Profiler

CHAPTER 5

Inversion of Control

5.1 Overview

Inversion of Control (IoC) is a software design pattern that inverts the resposibility of the ownership and creation of
dependencies. It advocates for removing such direct dependencies from user code, and pushing the flow of control out
into a separate library or process.

Jabberwocky has a tight integration with Autofac, a library that enables Dependency Injection (DI, a specific form of
IoC).

In order to improve upon the experience when working within these frameworks, Jabberwocky provides a few exten-
sions and services to greatly ease the burden of development.

5.2 Autowired Services

One of the tedious parts of using DI frameworks is in registering your dependencies.

Consider the following code, which is standard for most DI Containers (like Autofac):

var builder = new ContainerBuilder();
builder.RegisterType<NavigationBuilder>().As<INavigationBuilder>().InstancePerLifetimeScope();
builder.RegisterType<EmailService>().As<IEmailService>().InstancePerLifetimeScope();
builder.RegisterType<AccountNotificationService>().As<INotificationService>().InstancePerLifetimeScope();

We can reduce the amount of boilerplate code required (like above) by using the provided
AutowireServiceAttribute.

You can decorate your concrete classes with this attribute, and you can replace all of the
builder.RegisterType<> calls with a single line:

builder.AutowireServices("YOUR.Library");

What this does is automatically scan the provided assemblies, and for each type that is decorated with
AutowireServiceAttribute, Jabberwocky with automatically register that type as each of its implemented
interfaces.

So given a service with two interfaces, decorated with the AutowireServiceAttribute:

[AutowireService]
public class MyService : IMyService, IAnotherService
{

21

https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Inversion_of_control

Jabberwocky Documentation, Release 1

// Implementation elided
}

This would be equivalent to registering the following manually:

builder.RegisterType<MyService>().As<IMyService>().As<IAnotherService>();

5.3 Configuration

The AutowireServiceAttribute class has a few optional parameters that can be supplied to it:

• Scope: This represents the Lifetime Scope of the registration

• IsAggregateService: Whether or not the registration is for an Aggregate Service

Scope can have one of the following assignments:

• Default: This has transient behavior; ie. one instance per dependency

• PerScope: An instance per parent resolution scope

• PerRequest: For web-based scenarios; instance per web request

• NoTracking: Externally owned; will not be tracked by the container

• SingleInstance: Singleton semantics

For more information on lifetime scopes in Autofac, take a look at the documentation here.

IsAggregateService is a special case, and should be used on interface definitions. It registers that a given interface as
an aggregate service, which you can read more about here.

22 Chapter 5. Inversion of Control

http://docs.autofac.org/en/latest/lifetime/index.html
http://docs.autofac.org/en/latest/advanced/aggregate-services.html

CHAPTER 6

MVC Integration

6.1 Overview

Sitecore MVC provides many implementation options, and initially it can difficult to choose a path among all of them:

• Controller Renderings

• View Renderings

• Item Renderings

• etc.

To make matters a little more confusing, Sitecore MVC is a different beast than vanilla ASP.NET MVC. In the former,
routes aren’t handled by the controller naming convention like in ASP.NET MVC, but instead are handled by Sitecore’s
regular routing methodology - namely, based on an item path in Sitecore.

In order to help accelerate MVC development in Sitecore, we’ve developed a standard set of practices that you can
incorporate into your own projects.

6.2 Best Practices

For simplicity’s sake, and as a general rule of thumb, we recommend developing primarily against View Renderings
when using Sitecore MVC.

The reason for this is that we can rely on a few utilities in the Jabberwocky libraries to greatly reduce the amount of
boilerplate we need to write in order to create a rendering. With a View Rendering, all we need to do is create a View
(razor cshtml file), and a ViewModel (a class that inherits from GlassViewModel<T>). The actual binding of the
model to the view (which normally occurs in the Controller code) happens automatically in the case of Jabberwocky’s
GlassViewModel<T>.

Contrast this to Controller Renderings, which are much more aligned with standard MVC, but require the addition of
a Controller class. The downside to this approach is that you have to manually construct a model, populate it’s values,
and pass it off to the view itself, which becomes tedious and time consuming with the more components you have.
Therefore, the primary reason to use a Controller Rendering over a View Rendering would be in situations requiring
handling of post-backs (or GET-requests with complicated query string parsing). Otherwise, for simple components,
View Renderings are the way to go.

On the topic of ViewModels, the approach we are recommending is more in line with Model-View-Presenter (MVP),
or more loosely, Model-View-ViewModel (MVVM).

When using the View Rendering approach to developing components for Sitecore MVC, using a ViewModel over a
straight up Glass Mapper model offers many benefits, the biggest of which is probably that you can choose to create a

23

Jabberwocky Documentation, Release 1

ViewModel that composes multiple Glass Mapper models. This makes it easier to develop a component that has more
than one data source. Furthermore, using a ViewModel as opposed to the direct Glass Mapper model allows you to
implement View-specific logic within your ViewModel – logic which might not make sense to put within the Glass
Mapper model itself.

6.3 View Renderings

6.3.1 Setup

Getting started with View Renderings is easy. All you need to do is register the RegisterGlassMvcServices
extension method with Autofac, and create a few Views and ViewModels.

Registering the services with Autofac is as simple as:

builder.RegisterGlassMvcServices("YOURPROJECT.Web");

Note: If you followed the instructions in the Quickstart, then you should already have this extension method regis-
tered, and the appropriate config file in your App_Config/Include directory.

6.3.2 Creating a View

Creating a View is as easy as adding a new Razor View to your web project. You should then use the @inherits
directive to specify the base type for the View. We recommend using the CustomGlassView<T> like so:

@inherits Jabberwocky.Glass.Autofac.Mvc.Views.CustomGlassView<MyViewModel>

The generic type parameter is the type of your ViewModel.

6.3.3 Creating a ViewModel

A ViewModel is simply a class that inherits from the GlassViewModel<T> base class. The generic type parameter
for the GlassViewModel<T> is the type of Glass Mapper model to use as the GlassModel property. This allows
you to, from your View, access your ViewModel from the Model property, or your Glass Mapper model from your
Model.GlassModel property.

If you don’t have a need for a particular Glass Mapper model in your View, but you still want to use a ViewModel, you
can do so by specifying the generic type parameter as IGlassBase, which all Sitecore items should be assignment
compatible with.

Because your View is now decoupled from your Glass Mapper model, and instead is using your custom ViewModel,
you can also elect to use constructor injection within your ViewModel. This allows you to pull in arbitrary depen-
dencies in your ViewModel to write logic that dictates specific behavior for your View, without having to resort to
polluting your Glass Mapper models (or creating one-off extension methods) with view-specific logic.

In the next section, we’ll look at some of the advanced options available to you when using the Jabberwocky View
Model pattern.

6.4 The View Model

There are three configurable components to the ViewModel:

24 Chapter 6. MVC Integration

Jabberwocky Documentation, Release 1

1. The DataSource

2. The Rendering Parameters

3. The nested datasource strategy

6.4.1 DataSource

The GlassViewModel<TDatasource> type is used for creating a view-model that expects a strongly typed
datasource. This datasource should map to any datasource template type defined on the View Rendering in Sitecore
itself.

In the case where no datasource is specified, the type IGlassBase can be used, as all glass templates should inherit
from this base type.

You can access the underlying Glass datasource model from the GlassModel property exposed on the
GlassViewModel<TDatasource> type.

Important: Attempting to use the GlassModel property from within the constructor will result in a
NullReferenceException. If you need access to the underlying datasource from within the constructor, use
constructor injection instead, by including a constructor parameter of type TDatasource.

6.4.2 Rendering Parameters

Rendering Parameters provide a nice way to define another set of properties that can be used to configure a render-
ing. These are defined separately in Sitecore via Rendering Parameter Templates, and are then assigned to View
Renderings, independently of Datasource Templates.

You can use Rendering Parameters in a strongly-typed fashion by using the generic type of
GlassViewModel<TDatasource, TRenderingParameter>, which defines two generic parameters: the
first, for the datasource template, and the second for the type of rendering parameters.

In this manner, you can access the rendering parameters of the rendering via the RenderingParameters property.

Important: As called out above in the Datasource section, if you need to access the rendering parameters from
within the constructor, you cannot use the RenderingParameters property. Instead, you can include a construc-
tor argument of type TRenderingParameters, which will be injected for you automatically.

6.4.3 Nested Datasource Strategy

Sitecore 8 introduced the concept of nested datasources. Previously, if a rendering did not have a datasource spec-
ified, the Datasource property on that rendering would resolve to the current Context.Item. However, with
Sitecore 8+, there is a new setting (enabled by default) that resolves a rendering’s datasource to any parent rendering’s
datasource:

<setting name="Mvc.AllowDataSourceNesting" value="true"/>

The resolution logic now looks like the following:

1. Explicit DataSource specified (in the Datasource field)

2. Nested DataSource (specified by the Rendering.Item property, and inherited from any parents)

6.4. The View Model 25

Jabberwocky Documentation, Release 1

3. Sitecore Context Item (page item)

Step 2 may be unexpected for many people used to pre-8.0 resolution logic (steps 1 & 3), as this was the new step
added in Sitecore 8+. To solve this, we have introduced the following attributes, each of which may be applied directly
to a user-defined GlassViewModel.

• DisableNestedDatasource

• AllowNestedDatasource

• ConfigureDatasource

The third attribute (ConfigureDatasource) exposes a constructor param that dictates whether or not to use nested
datasource resolution. The first two attributes are simply extensions of the ConfigureDatasource attribute, and are
provided as shortcuts for their particular behavior.

Note: The absence of any of these attributes indicates that the default Sitecore datasource resolution strategy should
be used - this will be dictated by the value in the Mvc.AllowDataSourceNesting setting.

You can use these attributes on ViewModels like so:

[DisableNestedDatasource]
public class NeverFallbackViewModel : GlassViewModel<IGlassBase>
{

// PRE-Sitecore 8 behavior; ignores Mvc.AllowDataSourceNesting value

// The datasource may come from the direct datasource, or Context Item
// It will never be from the nested parent datasource

}

or

[AllowNestedDatasource]
public class AlwaysFallbackViewModel: GlassViewModel<IGlassBase>
{

// POST-Sitecore 8+ behavior; ignores Mvc.AllowDataSourceNesting value

// The datasource may come from the direct datasource, or nested parent datasource
// Or finally the Context Item

}

26 Chapter 6. MVC Integration

CHAPTER 7

Packages

7.1 Jabberwocky.Core

This library is the root of all Jabberwocky packages. It has no third-party dependencies, and so can be included in any
project type, Sitecore or otherwise.

It mostly contains useful utilities and services that end up being reused a lot across projects.

27

	Getting Started
	Jabberwocky Overview
	Quickstart

	Caching
	Overview
	Usage
	Cache Provider
	Sitecore Integration
	Asynchronous Caching

	Glass Interface Factory
	Overview
	Initial Setup
	Implementation Guide
	Usage

	Mini Profiler
	Overview
	Module Setup
	Configuration
	MiniProfiler Setup

	Inversion of Control
	Overview
	Autowired Services
	Configuration

	MVC Integration
	Overview
	Best Practices
	View Renderings
	The View Model

	Packages
	Jabberwocky.Core

